4.7 Article

Protocols for cytogenetic studies of human embryonic stem cells

Journal

METHODS
Volume 45, Issue 2, Pages 133-141

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymeth.2008.03.005

Keywords

chromosomes; cytogenetics; karyotype; FISH; in-situ hybridization; G-banding; embryonic stem cells; hESC; trisomy; quality assurance

Ask authors/readers for more resources

All cultured cells develop chromosome changes over time, including cultures of human embryonic stem cells (hESC), but only those cells with adaptive chromosomes changes survive. The most frequent chromosome changes in hESC cultures are trisomy 12 and trisomy 17. Cells with these trisomies are indistinguishable from normal cells by appearance and also demonstrate typical markers of pluripotency, making them difficult to identify without cytogenetic analysis. Early detection of these cells is essential since cells with trisomy 12 and 17 can replace the normal cell population in 5-10 passages. Cytogenetic analysis using G-banding is considered to be the gold standard for detecting chromosome abnormalities and, when used in combination with interphase FISH, provides a sensitive method for early detection of cytogenetic aberrations, such as full and partial trisomies of chromosomes 12 and 17. The following discussion describes the cytogenetic methods used in our laboratory to study cultured hESCs, along with recommendations for integrating these methods into a plan for routine cell line quality control. (c) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available