4.1 Review

Short-lived radioactivity in the early solar system: The Super-AGB star hypothesis

Journal

METEORITICS & PLANETARY SCIENCE
Volume 47, Issue 12, Pages 1998-2012

Publisher

WILEY
DOI: 10.1111/j.1945-5100.2012.01411.x

Keywords

-

Funding

  1. ARC Future Fellowship
  2. ARC Monash Fellowship
  3. CSIRO Astrophysics and Space Sciences (CASS)
  4. Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]
  5. Communaute francaise de Belgique-Actions de Recherche Concertees
  6. Institut d'Astronomie et d'Astrophysique at the Universite Libre de Bruxelles (ULB)

Ask authors/readers for more resources

The composition of the most primitive solar system condensates, such as calcium-aluminum-rich inclusions (CAIs) and micron-sized corundum grains, show that short-lived radionuclides (SLR), e.g., 26Al, were present in the early solar system. Their abundances require a local or stellar origin, which, however, is far from being understood. We present for the first time the abundances of several SLR up to 60Fe predicted from stars with initial mass in the range approximately 711 M circle dot. These stars evolve through core H, He, and C burning. After core C burning they go through a Super-asymptotic giant branch (Super-AGB) phase, with the H and He shells activated alternately, episodic thermal pulses in the He shell, a very hot temperature at the base of the convective envelope (approximately 108 K), and strong stellar winds driving the H-rich envelope into the surrounding interstellar medium. The final remnants of the evolution of Super-AGB stars are mostly ONe white dwarfs. Our Super-AGB models produce 26Al/27Al yield ratios approximately 0.020.26. These models can account for the canonical value of the 26Al/27Al ratio using dilutions with the solar nebula of the order of 1 part of Super-AGB mass per several 102 to several 103 of solar nebula mass, resulting in associated changes in the O-isotope composition in the range Delta 17O from 3 to 20 parts per thousand. This is in agreement with observations of the O isotopic ratios in primitive solar system condensates, which do not carry the signature of a stellar polluter. The radionuclides 41Ca and 60Fe are produced by neutron captures in Super-AGB stars and their meteoritic abundances are also matched by some of our models, depending on the nuclear and stellar physics uncertainties as well as the meteoritic experimental data. We also expect and are currently investigating Super-AGB production of SLR heavier than iron, such as 107Pd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available