4.5 Article Proceedings Paper

Solidification of a Vacuum Arc-Remelted Zirconium Ingot

Publisher

SPRINGER
DOI: 10.1007/s11663-013-9964-z

Keywords

-

Funding

  1. French National Research Agency [ANR-08-MAPR-0006-04]

Ask authors/readers for more resources

As the quality of vacuum arc-remelted (VAR) zirconium ingots is directly linked to their chemical homogeneity and their metallurgical structure after solidification, it is important to predictively relate these factors to the operating conditions. Therefore, a detailed modeling study of the solidification process during VAR has been undertaken. To this purpose, the numerical macromodel SOLAR has been used. Assuming axisymmetrical geometry, this model is based on the solution of the coupled transient heat, momentum, and solute transport equations, under turbulent flow conditions during the remelting, hot-topping, and cooling of a cylindrical ingot. The actual operating parameters are defined as inputs for the model. Each of them, mainly the melting current sequence, melting rate sequence, and stirring parameters (current and period), is allowed to vary with time. Solidification mechanisms recently implemented in the model include a full coupling between energy and solute transport in the mushy zone. This modeling can be applied to actual multicomponent alloys. In this article, the macrosegregation induced by solidification in a zirconium alloy ingot is investigated. In order to validate the model results, a full-scale homogeneous Zy4 electrode has been remelted, and the resulted ingot has been analyzed. The model results show a general good agreement with the chemistry analyses, as soon as thermosolutal convection is accounted for to simulate accurately the interdendritic fluid flow in the central part of the ingot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available