4.6 Article Proceedings Paper

Processing Parameter Influence on Texture and Microstructural Evolution in Cu-Nb Multilayer Composites Fabricated via Accumulative Roll Bonding

Publisher

SPRINGER
DOI: 10.1007/s11661-013-2162-4

Keywords

-

Funding

  1. Los Alamos National Laboratory Directed Research and Development (LDRD) Project [DR20110029]
  2. DOE [DE-AC52-06NA25396]

Ask authors/readers for more resources

A combination of accumulative roll bonding and rolling is used to fabricate bulk sheets of multilayer Cu-Nb bimetallic composites. Alterations in the processing sequence are made in comparison with prior studies in order to expand the processing window available for bimetallic multilayer composites. Cu-Nb composites with layer thicknesses ranging from 45 mu m to 10 nm with accompanying total strains of 3.8 to 12.21 are characterized via neutron diffraction, electron back scatter diffraction, and transmission electron microscopy. These characterization methods provide microstructural information such as layer morphology and grain morphology as well as orientation information such as texture and interface plane normal distribution. The evolution of these microstructural characteristics is collected as a function of increasing strain. These results can provide guidance, inputs, and validation for multiscale predictive models that are being developed on materials with interfacially-driven properties. Finally, synthesis pathways are presented that allow the fabrication of nanoscale multilayer composites with predominant interfacial structures. These fabricated materials are ideal for exploring the relative importance between inter-phase interfacial density and atomic interfacial structure in determining material properties. (C) The Minerals, Metals & Materials Society and ASM International 2013

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available