4.6 Article

Phase-Field Modeling for Intercritical Annealing of a Dual-Phase Steel

Publisher

SPRINGER
DOI: 10.1007/s11661-014-2698-y

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. ArcelorMittal Dofasco Inc.

Ask authors/readers for more resources

A phase-field model has been developed to describe microstructure evolution during intercritical annealing of a commercial DP600 dual-phase steel. The simulations emphasize the interaction between ferrite recrystallization and austenite formation from a cold-rolled pearlite/ferrite microstructure at high heating rates. The austenite-ferrite transformations are assumed to occur under conditions where only carbon partitions between the phases by long-range diffusion. A solute drag model has been integrated with the phase-field model to describe the effect of substitutional alloying elements on the migration of the ferrite/austenite interface. Experimental results including recrystallization and transformation kinetics as well as austenite morphology have been successfully described by carefully adjusting both the austenite nucleation scenario and the interface mobilities. (C) The Minerals, Metals & Materials Society and ASM International 2014

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available