4.6 Article

Grain Nucleation Parameters for Aluminum Alloys: Experimental Determination and Model Validation

Publisher

SPRINGER
DOI: 10.1007/s11661-008-9738-4

Keywords

-

Ask authors/readers for more resources

A statistical grain nucleation model was implemented as a part of a multiphase flow and solidification simulation code for metallic alloys. Three characteristic parameters control the solution accuracy of the nucleation model: the total grain density, the mean undercooling, and the standard deviation of the undercooling. These parameters were obtained experimentally for grain-refined (GR) A356, GR AlCu4, and unrefined (UR) AlCu4 aluminum alloys. An apparatus was constructed and equipped with a cooling system to provide different cooling rates throughout the cast sample. The local grain density related to each cooling rate and undercooling was determined. The model parameters were obtained via statistical tools and were used to perform a simulation for the solidification of the cast sample. Calculated results were compared to experimental results, and the model exhibited good agreement with the experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available