4.4 Article

Metabolite profiling and fingerprinting of commercial cultivars of L. (hop): a comparison of MS and NMR methods in metabolomics

Journal

METABOLOMICS
Volume 8, Issue 3, Pages 492-507

Publisher

SPRINGER
DOI: 10.1007/s11306-011-0335-y

Keywords

Humulus lupulus L.; Hop; H-1 NMR-based metabolomics; ESI-FTICR MS; LC-MS; Humulones; Lupulones; Principal component analysis; Flavonoids; Isoprenoids; Plant secondary metabolites

Funding

  1. Alexander von Humboldt-foundation, Germany

Ask authors/readers for more resources

Hop ( L. Cannabaceae) is an economically important crop. In addition to its role in beer brewing, its pharmaceutical applications have been of increasing importance in recent years. Bitter acids (prenylated polyketides), prenylflavonoids and essential oils, are the primary phytochemical components that account for hop medicinal value. An integrated approach utilizing nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques was used for the first large-scale metabolite profiling in Resins and extracts prepared from 13 hop cultivars were analysed using NMR, liquid chromatography (LC)-MS and fourier transform ion cyclotron resonance (FTICR)-MS in parallel and subjected to principal component analysis (PCA). A one pot extraction method, compatible with both MS and NMR measurement was developed to help rule out effects due to differences in extraction protocols. Under optimised conditions, we were able to simultaneously quantify and identify 46 metabolites including 18 bitter acids, 12 flavonoids, 3 terpenes, 3 fatty acids and 2 sugars. Cultivars segregation in PCA plots generated from both LC-MS and NMR data were found comparable and mostly influenced by differences in bitter acids composition among cultivars. FTICR-MS showed inconsistent PCA loading plot results which are likely due to preferential ionisation and also point to the presence of novel isoprenylated metabolites in hop. This comparative metabolomic approach provided new insights for the complementariness and coincidence for these different technology platform applications in hop and similar plant metabolomics projects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available