4.7 Article

Metabolic and pathway engineering to influence native and altered erythromycin production through E. coli

Journal

METABOLIC ENGINEERING
Volume 19, Issue -, Pages 42-49

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2013.05.005

Keywords

E. coli; Erythromycin; Substrate; Propionyl-CoA; Methylmalonyl-CoA; Antibiotic

Ask authors/readers for more resources

The heterologous production of the complex antibiotic erythromycin through Escherichia coli provides a unique challenge in metabolic engineering. In addition to introducing the 19 foreign genes needed for heterologous biosynthesis, E coli metabolism must be engineered to provide the propionyl-CoA and (2S)-methylmalonyl-CoA substrates required to allow erythromycin formation. In this work, three different pathways to propionyl-CoA were compared in the context of supporting E coli erythromycin biosynthesis. The comparison revealed that alternative citramalate and threonine metabolic pathways (both starting from exogenous glycerol) were capable of supporting final compound formation equal to a proven pathway reliant upon exogenous propionate. Furthermore, two pathways to (2S)-methylmalonyl-CoA were compared in the production of a novel benzyl-erythromycin analog. A pathway dependent upon exogenous methylmalonate improved selectivity and facilitated antibiotic assessment of this new analog. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available