4.6 Article

Development of a prototype gantry system for preclinical x-ray phase-contrast computed tomography

Journal

MEDICAL PHYSICS
Volume 38, Issue 11, Pages 5910-5915

Publisher

WILEY
DOI: 10.1118/1.3644844

Keywords

x-ray imaging; phase contrast; computed tomography; micro-computed tomography

Funding

  1. DFG Cluster of Excellence Munich-Center for Advanced Photonics
  2. European Research Council [240142]
  3. European Research Council (ERC) [240142] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Purpose: To explore the potential of grating-based x-ray phase-contrast imaging for clinical applications, a first compact gantry system was developed. It is designed such that it can be implemented into an in-vivo small-animal phase-contrast computed tomography (PC-CT) scanner. The purpose of the present study is to assess the accuracy and quantitativeness of the described gantry in both absorption and phase-contrast. Methods: A phantom, containing six chemically well-defined liquids, was constructed. A tomography scan with cone-beam reconstruction of this phantom was performed yielding the spatial distribution of the linear attenuation coefficient mu and decrement delta of the complex refractive index. Theoretical values of mu and delta were calculated for each liquid from tabulated data and compared with the experimentally measured values. Additionally, a color-fused image representation is proposed to display the complementary absorption and phase-contrast information in a single image. Results: Experimental and calculated data of the phantom agree well confirming the quantitativeness and accuracy of the reconstructed spatial distributions of mu and delta. The proposed color-fused image representation, which combines the complementary absorption and phase information, considerably helps in distinguishing the individual substances. Conclusions: The concept of grating-based phase-contrast computed tomography (CT) can be implemented into a compact, cone-beam geometry gantry setup. The authors believe that this work represents an important milestone in translating phase-contrast x-ray imaging from previous proof-of-principle experiments to first preclinical biomedical imaging applications on small-animal models. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3644844]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available