4.6 Article

Single x-ray absorptiometry method for the quantitative mammographic measure of fibroglandular tissue volume

Journal

MEDICAL PHYSICS
Volume 36, Issue 12, Pages 5525-5536

Publisher

WILEY
DOI: 10.1118/1.3253972

Keywords

FFDM; breast density; risk factors; digital mammography; mammographic density

Funding

  1. Pfizer Independent
  2. Da-Costa International Breast Cancer Fund
  3. NIH/NCI [P01 CA107584]

Ask authors/readers for more resources

Purpose: This study describes the design and characteristics of a highly accurate, precise, and automated single-energy method to quantify percent fibroglandular tissue volume (% FGV) and fibroglandular tissue volume (FGV) using digital screening mammography. Methods: The method uses a breast tissue-equivalent phantom in the unused portion of the mammogram as a reference to estimate breast composition. The phantom is used to calculate breast thickness and composition for each image regardless of x-ray technique or the presence of paddle tilt. The phantom adheres to the top of the mammographic compression paddle and stays in place for both craniocaudal and mediolateral oblique screening views. We describe the automated method to identify the phantom and paddle orientation with a three-dimensional reconstruction least-squares technique. A series of test phantoms, with a breast thickness range of 0.5-8 cm and a % FGV of 0%-100%, were made to test the accuracy and precision of the technique. Results: Using test phantoms, the estimated repeatability standard deviation equaled 2%, with a +/- 2% accuracy for the entire thickness and density ranges. Without correction, paddle tilt was found to create large errors in the measured density values of up to 7%/mm difference from actual breast thickness. This new density measurement is stable over time, with no significant drifts in calibration noted during a four-month period. Comparisons of % FGV to mammographic percent density and left to right breast % FGV were highly correlated (r = 0.83 and 0.94, respectively). Conclusions: An automated method for quantifying fibroglandular tissue volume has been developed. It exhibited good accuracy and precision for a broad range of breast thicknesses, paddle tilt angles, and % FGV values. Clinical testing showed high correlation to mammographic density and between left and right breasts. (C) 2009 American Association of Physicists in Medicine. [DOI: 10.1118/1.3253972]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available