4.6 Article

Search for IMRT inverse plans with piecewise constant fluence maps using compressed sensing techniques

Journal

MEDICAL PHYSICS
Volume 36, Issue 5, Pages 1895-1905

Publisher

AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS
DOI: 10.1118/1.3110163

Keywords

cancer; optimisation; radiation therapy

Funding

  1. National Cancer Institute [5R01CA98523]
  2. National Cancer Institute Department of Defense [PC040282]

Ask authors/readers for more resources

An intensity-modulated radiation therapy (IMRT) field is composed of a series of segmented beams. It is practically important to reduce the number of segments while maintaining the conformality of the final dose distribution. In this article, the authors quantify the complexity of an IMRT fluence map by introducing the concept of sparsity of fluence maps and formulate the inverse planning problem into a framework of compressing sensing. In this approach, the treatment planning is modeled as a multiobjective optimization problem, with one objective on the dose performance and the other on the sparsity of the resultant fluence maps. A Pareto frontier is calculated, and the achieved dose distributions associated with the Pareto efficient points are evaluated using clinical acceptance criteria. The clinically acceptable dose distribution with the smallest number of segments is chosen as the final solution. The method is demonstrated in the application of fixed-gantry IMRT on a prostate patient. The result shows that the total number of segments is greatly reduced while a satisfactory dose distribution is still achieved. With the focus on the sparsity of the optimal solution, the proposed method is distinct from the existing beamlet- or segment-based optimization algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available