4.7 Article

Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences

Journal

MEDICAL IMAGE ANALYSIS
Volume 13, Issue 2, Pages 325-342

Publisher

ELSEVIER
DOI: 10.1016/j.media.2008.12.004

Keywords

Biomedical imaging; Microscopy image sequences; Tracking virus particles

Funding

  1. BMBF (FORSYS)

Ask authors/readers for more resources

Modern developments in time-lapse fluorescence microscopy enable the observation of a variety of processes exhibited by viruses. The dynamic nature of these processes requires the tracking of viruses over time to explore spatial-temporal relationships. In this work, we developed deterministic and probabilistic approaches for multiple virus tracking in multi-channel fluorescence microscopy images. The deterministic approaches follow a traditional two-step paradigm comprising particle localization based on either the spot-enhancing filter or 2D Gaussian fitting, as well as motion correspondence based on a global nearest neighbor scheme. Our probabilistic approaches are based on particle filters. We describe approaches based on a mixture of particle filters and based on independent particle filters. For the latter, we have developed a penalization strategy that prevents the problem of filter coalescence (merging) in cases where objects lie in close proximity. A quantitative comparison based on synthetic image sequences is carried out to evaluate the performance of our approaches. In total, eight different tracking approaches have been evaluated. We have also applied these approaches to real microscopy images of HIV-1 particles and have compared the tracking results with ground truth obtained from manual tracking. It turns out that the probabilistic approaches based on independent particle filters are superior to the deterministic schemes as well as to the approaches based on a mixture of particle filters. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available