4.7 Article

Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling

Journal

MEDICAL IMAGE ANALYSIS
Volume 13, Issue 1, Pages 5-18

Publisher

ELSEVIER
DOI: 10.1016/j.media.2008.05.001

Keywords

Diffusion tensor MRI; Tractography; Probabilistic fiber tracking; Particle Filtering; von Mises-Fisher sampling

Funding

  1. National Institutes of Health [U54 EB005149]
  2. NIMH Silvio Conte Center for Neuroscience of Mental Disorders [MH064065]

Ask authors/readers for more resources

Standard particle filtering technique have previously been applied to the problem of fiber tracking by Brun et al. [Brun, A., Bjornemo, M., Kikinis, R., Westin, C.F., 2002. White matter tractography using sequential importance sampling. In: Proceedings of the ISMRM Annual Meeting, p. 1131] and Bjornemo et al. [Bjornemo, M., Brun, A., Kikinis, R., Westin, C.F., 2002. Regularized stochastic white matter tractography using diffusion tensor MRI, In: Proc. MICCAI, pp. 435-442]. However, these previous attempts have not utilised the full power of the technique, and as a result the fiber paths were tracked in a goal directed way. In this paper, we provide an advanced technique by presenting a fast and novel probabilistic method for white matter fiber tracking in diffusion weighted MRI (DWI), which takes advantage of the weighting and resampling mechanism of particle filtering. We formulate fiber tracking using a non-linear state space model which captures both smoothness regularity of the fibers and the uncertainties in the local fiber orientations due to noise and partial volume effects. Global fiber tracking is then posed as a problem of particle filtering. To model the posterior distribution, we classify voxels of the white matter as either prolate or oblate tensors. We then construct the orientation distributions for prolate and oblate tensors separately. Finally, the importance density function for particle filtering is modeled using the von Mises-Fisher distribution on a unit sphere. Fast and efficient sampling is achieved using Ulrich-Wood's simulation algorithm. Given a seed point, the method is able to rapidly locate the globally optimal fiber and also provides a probability map for potential connections. The proposed method is validated and compared to alternative methods both on synthetic data and real-world brain MRI datasets. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available