4.5 Article

Placenta-derived hypo-serotonin situations in the developing forebrain cause autism

Journal

MEDICAL HYPOTHESES
Volume 80, Issue 4, Pages 368-372

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.mehy.2013.01.002

Keywords

-

Funding

  1. Ministry of Education, Science and Culture of Japan
  2. Shintenkai
  3. Grants-in-Aid for Scientific Research [23390289, 23650174] Funding Source: KAKEN

Ask authors/readers for more resources

Autism is a pervasive developmental disorder that is characterized by the behavioral traits of impaired social cognition and communication, and repetitive and/or obsessive behavior and interests. Although there are many theories and speculations about the pathogenetic causes of autism, the disruption of the serotonergic system is one of the most consistent and well-replicated findings. Recently, it has been reported that placenta-derived serotonin is the main source in embryonic day (E) 10-15 mouse forebrain, after that period, the serotonergic fibers start to supply serotonin into the forebrain. E 10-15 is the very important developing period, when cortical neurogenesis, migration and initial axon targeting are processed. Since all these events have been considered to be involved in the pathogenesis of autism and they are highly controlled by serotonin signals, the paucity of placenta-derived serotonin should have potential importance when the pathogenesis of autism is considered. I, thus, postulate a hypothesis that placenta-derived hypo-serotonin situations in the developing forebrain cause autism. The hypothesis is as follows. Various factors, such as inflammation, dysfunction of the placenta, together with genetic predispositions cause a decrease of placenta-derived serotonin levels. The decrease of placenta-derived serotonin levels leads to hypo-serotonergic situations in the forebrain of the fetus. The paucity of serotonin in the forebrain leads to mis-wiring in important regions which are responsible for the theory of mind. The paucity of serotonin in the forebrain also causes over-growth of serotonergic fibers. These disturbances result in network deficiency and aberration of the serotonergic system, leading to the autistic phenotypes. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available