4.4 Article

Nonstationarity of dynamic cerebral autoregulation

Journal

MEDICAL ENGINEERING & PHYSICS
Volume 36, Issue 5, Pages 576-584

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2013.09.004

Keywords

Cerebral blood flow; Time series analysis; Cerebral haemodynamics; Review paper; Mathematical modelling

Ask authors/readers for more resources

Dynamic cerebral autoregulation (dCA), the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (BP), is usually quantified by parameters extracted from time- or frequency-domain analysis. Reproducibility studies of dCA parameters and consideration of the physiological determinants of the dynamic BP-CBF relationship provide strong indications that dCA is a nonstationary process. As a consequence, new analytical approaches are needed to estimate dCA parameters with greater temporal resolution thus allowing its longitudinal patterns of variability to be assessed in health and disease states. Techniques proposed for this task include ARMA models with moving windows, recursive least-squares, Laguerre-Volterra networks, wavelet phase synchronisation, and multimodal pressure-flow analysis. Initial results with these techniques have revealed the influence of some key determinants of dCA nonstationarity, such as PaCO2, as well as their ability to reflect dCA impairment in different clinical conditions. One key priority for future work is the development and validation of multivariate time-varying techniques to minimise the influence to the many co-variates which contribute to dCA nonstationarity. (C) 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available