4.4 Article

Image-based vs. mesh-based statistical appearance models of the human femur: Implications for finite element simulations

Journal

MEDICAL ENGINEERING & PHYSICS
Volume 36, Issue 12, Pages 1626-1635

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2014.09.006

Keywords

Statistical appearance model; Image registration; Mesh morphing; Finite element simulations; Femur mechanics

Funding

  1. Swiss National Science Foundation through the NCCR Co-Me

Ask authors/readers for more resources

Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur. Published by Elsevier Ltd on behalf of IPEM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available