4.4 Article

Analysis of type I endoleaks in a stented abdominal aortic aneurysm

Journal

MEDICAL ENGINEERING & PHYSICS
Volume 31, Issue 1, Pages 27-33

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2008.03.005

Keywords

Abdominal aortic aneurysm; Endovascular graft; Type I endoleaks; Fluid-structure interaction; Computational parametric sensitivity analyses

Ask authors/readers for more resources

To improve the performance of endovascular grafts used for the treatment of abdominal aortic aneurysms, we develop a methodology to analyze the phenomena of type I endoleaks in a non-invasive-stented abdominal aorta. As one aspect of this study, an evaluation of the parietal stresses generated by the blood flow is provided. As blood is known to be a shear-thinning, non-Newtonian fluid, we have chosen to use the Phan-Thien and Tanner model, which can be derived from the rheology of polymer solutions. As a second aspect, we develop an axisymmetric finite-element model of the complete system. An explicit finite-element in-house code, is used to simulate the behavior of the system, which is subjected to hydrostatic pressure and to the stresses generated by the blood flow. As the response of the solid is strongly affected by the response of the fluid, and vice versa, the modeling of a coupled fluid-structure interaction is achieved in this work. This study provides an evaluation of the stresses generated by the blood flow on the aorta's wall. The finite-element model allows to identify biomechanical factors that can influence the propensity of an aneurysm treated with an endograft, to exhibit endoleaks. First observations are made concerning the influence of oversizing of the endograft and the influence of friction coefficients between the aorta, endograft and plaque. (C) 2008 IPEM. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available