4.4 Article

Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery

Journal

MEDICAL ENGINEERING & PHYSICS
Volume 30, Issue 1, Pages 9-19

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2007.02.001

Keywords

non-Newtonian blood flow; wall shear stress; coronary artery; intravascular ultrasound

Ask authors/readers for more resources

The capabilities and limitations of various molecular viscosity models, in the left coronary arterial tree, were analyzed via: molecular viscosity, local and global non-Newtonian importance factors, wall shear stress (WSS) and wall shear stress gradient (WSSG). The vessel geometry was acquired using geometrically correct 3D intravascular ultrasound (3DIVUS). Seven non-Newtonian molecular viscosity models, plus the Newtonian one, were compared. The WSS distribution yielded a consistent LCA pattern for nearly all non-Newtonian models. High molecular viscosity, low WSS and low WSSG values occured at the outer walls of the major bifurcation in proximal LCA regions. The Newtonian blood flow was found to be a good approximation at mid- and high-strain rates. The non-Newtonian Power Law, Generalized Power Law, Carreau and Casson and Modified Cross blood viscosity models gave comparable molecular viscosity, WSS and WSSG values. The Power Law and Walbum-Schneck models over-estimated the non-Newtonian global importance factor I-G and under-estimated the area averaged WSS and WSSG values. The non-Newtonian Power Law and the Generalized Power Law blood viscosity models were found to approximate the molecular viscosity and WSS calculations in a more satisfactory way. (c) 2007 IPEM. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available