4.7 Article

Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting

Journal

APPLIED SURFACE SCIENCE
Volume 339, Issue -, Pages 122-127

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2015.02.074

Keywords

ZnO; Nanorod array; Patterned; Photoelectrochemical; Water splitting

Funding

  1. National Major Research Program of China [2013CB932602]
  2. Major Project of International Cooperation and Exchanges [2012DFA50990]
  3. Program of Introducing Talents of Discipline to Universities, NSFC [51232001, 51172022, 51372023, 51372020]
  4. Beijing Municipal Commission of Education
  5. Fundamental Research Funds for the Central Universities
  6. Program for Changjiang Scholars and Innovative Research Team in University

Ask authors/readers for more resources

Nowadays, the fabrication of photoanodes with high light-harvesting capability and charge transfer efficiency is a key challenge for photoelectrochemical (PEC) water splitting. In this paper, large-scale patterned ZnO nanorod arrays (NRAs) were designed and fabricated via two-beam laser interference lithography and hydrothermal synthesis, which were further applied as PEC photoanodes for the first time. By adopting the ZnO NRA photoanodes with square pattern, the PEC cells achieved a maximum efficiency of 0.18%, which was improved 135% compared to the control group with no patterned ZnO NRAs. The large-scale highly ordered ZnO NRAs have enhanced light-harvesting ability due to the light-scattering effect. In addition, the enlarged surface area of the patterned ZnO NRAs accelerated the charge transfer at the photoanode/electrolyte interface. This research demonstrates an effective mean to realize the efficient solar water splitting, and the results suggest that large-scale highly ordered nanostructures are promising candidates in the field of energy harvesting. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available