4.7 Article Proceedings Paper

Ternary g-C3N4/ZnO/AgCl nanocomposites: Synergistic collaboration on visible-light-driven activity in photodegradation of an organic pollutant

Journal

APPLIED SURFACE SCIENCE
Volume 358, Issue -, Pages 261-269

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2015.08.149

Keywords

g-C3N4/ZnO/AgCL; Nanocomposite; Photocatalyst; Visible-light-driven

Funding

  1. University of Mohaghegh Ardabili

Ask authors/readers for more resources

The present work demonstrates the preparation of ternary g-C3N4/ZnO/AgCl nanocomposites, as novel visible-light-driven photocatalysts, using a facile large-scale methodology. The microstructure, morphology, purity, thermal, and spectroscopic properties of the prepared samples were studied using XRD, TEM, EDX, TG, UV-vis DRS, FT-IR, and PL techniques. Compared with the g-C3N4/ZnO and g-C3N4/AgCl nanocomposites, the g-C3N4/ZnO/AgCl nanocomposites displayed higher photocatalytic activity for degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of the g-C3N4/ZnO/AgCl (40%) nanocomposite is about 9.5, 7.5, and 6-fold higher than those of the g-C3N4, g-C3N4/ZnO, and g-C3N4/AgCl samples, respectively. The enhanced photocatalytic activity of the nanocomposites was mainly attributed to efficiently separation of the charge carriers by synergistic collaboration of ZnO and AgCl in removing photogenerated electrons from g-C3N4. Furthermore, the results showed that the photocatalytic activity of the nanocomposite considerably depends on the preparation time, calcination temperature, and scavengers of the reactive species. Finally, the nanocomposite was found to be a reusable photocatalyst. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available