4.6 Article

Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator

Journal

MECHATRONICS
Volume 19, Issue 5, Pages 656-670

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechatronics.2009.02.008

Keywords

Rate-dependent hysteresis; Piezoceramic actuator; Prandtl-Ishlinskii model

Ask authors/readers for more resources

Laboratory experiments were performed to characterize the rate-dependent hysteresis properties of a piezoceramic actuator under harmonic, complex harmonic and triangular excitations in the 0.1-500 Hz frequency range. The measured data were analyzed to describe the major and minor hysteresis loops as functions of frequency, magnitude and bias of the input voltage. The results revealed considerably larger hysteresis loop width and lower displacement response amplitude under frequencies above 10 Hz. A rate-dependent Prandtl-Ishlinskii model is developed for describing the rate-dependent hysteresis behaviour of the actuator. This model integrates rate-dependent play operator and density functions formulated on the basis of the rate of change of input and experimentally observed behaviors. The fundamental properties of the proposed rate-dependent play and stop hysteresis operators are also investigated. The model results attained under harmonic, complex harmonic and triangular inputs at different frequencies in the 0.1-500 Hz were compared with the corresponding experimental data to demonstrate model validity over the wide range of inputs. Very good agreements were observed between the model results and the measured data, irrespective of the type and frequency of excitation. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available