4.5 Article

Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1

Journal

MECHANISMS OF AGEING AND DEVELOPMENT
Volume 132, Issue 3, Pages 75-85

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.mad.2010.12.004

Keywords

microRNA; Aging; Liver; Sirt1; Mgst1

Funding

  1. U.S. National Aeronautics and Space Administration (NASA) [NNX08AP23G]

Ask authors/readers for more resources

Age-dependent loss of oxidative defense is well recognized in rodent models, although the control mechanism is still obscure; a few studies have shown how microRNAs, a non-coding RNA species, regulate the expression of their target genes at the post-transcriptional level. In the current study, miR-34a and miR-93 are observed to increase in middle- and old-age rat liver, compared to young rats; the up-regulation of these two miRNAs is determined by qPCR through a grind-and-find approach, and histochemical in situ hybridization. Three commonly used miRNA target prediction programs suggest four candidate targets of miR-34a and miR-93: Sp1, Nrf2 (Nfe212), Sirt1 and Mgst1; their expression is found to be reduced inversely to the up-regulation of the two miRNAs by Western blotting of protein extracts, as well as immunofluorescence staining of intact liver tissues. Furthermore, the suppression of the four proteins by miR-34a/miR-93 is examined in HEK 293 cells by transfection and co-transfection; miR-34a represses all four proteins' expression, whereas miR-93 affects only Sp1,Sirt1 and Mgst1. Taken together, our study suggests a model of post-transcriptional repression, not only of genes involved in oxidative stress regulation and oxidative stress defense proteins, such as Sirt1 and Mgst1, but also of upstream transcription factors (TFs) regulating their activation, since Sp1 is the TF for both Sirt1 and Mgst1, and Nrf2 is the TF of Mgst1. Thus, up-regulation of both miR-34a and miR-93 constitutes an inescapable repression of two vital oxidative defense genes, by targeting not only the targets, but also transcription factors controlling their activation, a double dampening regulation at the post-transcriptional level. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available