4.4 Article

Pollen tube growth: Getting a grip on cell biology through modeling

Journal

MECHANICS RESEARCH COMMUNICATIONS
Volume 42, Issue -, Pages 32-39

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechrescom.2011.11.005

Keywords

Feedback mechanism; Intracellular transport; Oscillation; Modeling; Pollen tube growth

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT)

Ask authors/readers for more resources

Cellular growth in plant, fungal and bacterial cells is based on the mechanical deformation of the cellular envelope by the hydrostatic turgor pressure. Shape generation is therefore a mechanical problem whose biological control is poorly understood. The pollen tube is an attractive model system for the investigation of the growth process in walled cells. The geometry, mechanics and kinetics of the growth process represent intriguing features that are well investigated experimentally. In particular, the presence of regular pulsations in the growth rate, an indicator of non-linear feedback regulation, has attracted the attention of modelers from the engineering, mathematical and physical communities. Here, we summarize important hallmarks characterizing pollen tube growth, and we illustrate how modeling and mathematical analysis have become an integral part of the research programs targeting this cell type. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available