4.7 Article

Numerical modeling of effect of polyurea on response of steel plates to impulsive loads in direct pressure-pulse experiments

Journal

MECHANICS OF MATERIALS
Volume 42, Issue 6, Pages 615-627

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mechmat.2009.09.009

Keywords

Impulsive pressure loads; Direct pressure-pulse experiments; Physics-based constitutive models; Finite-element analysis; Fluid-structure interaction; Metal-polymer bilayer composites

Funding

  1. ONR (MURI) [00140210666]

Ask authors/readers for more resources

Results of computational modeling and simulation of the response of monolithic DH-36 steel plates and bilayer steel-polyurea plates to impulsive loads in direct pressure-pulse experiments (Amini et al., in press-b), are presented and discussed. The corresponding experiments and their results are presented in an accompanying paper (Amini et al., 2010). The entire experimental setup is modeled using the finite-element code, LS-DYNA, in which a physics-based temperature- and strain rate-sensitive constitutive model for DH-36 steel, developed by Nemat-Nasser and Guo (2003b) and an experimentally supported temperature-, rate-, and pressure-sensitive constitutive model for polyurea, developed and incorporated into the computer code, LS-DYNA, by Amirkhizi et al. (2006), have been implemented. The transient response of the plates under impulsive pressure loads is studied, focusing on the effects of the relative position of polyurea with respect to the loading direction, the thickness of the polyurea layer, and the polyurea-steel interface bonding strength. The numerical simulations of the entire experiment support the experimentally observed results reported by Amini et al. (2010). (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available