4.7 Article

Roller element bearing fault diagnosis using singular spectrum analysis

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 35, Issue 1-2, Pages 150-166

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2012.08.019

Keywords

Singular spectrum analysis; Bearing fault; Vibration analysis; Induction motor; Neural network

Funding

  1. Dept. of Atomic Energy, India

Ask authors/readers for more resources

Most of the existing time series methods of feature extraction involve complex algorithm and the extracted features are affected by sample size and noise. In this paper, a simple time series method for bearing fault feature extraction using singular spectrum analysis (SSA) of the vibration signal is proposed. The method is easy to implement and fault feature is noise immune. SSA is used for the decomposition of the acquired signals into an additive set of principal components. A new approach for the selection of the principal components is also presented. Two methods of feature extraction based on SSA are implemented. In first method, the singular values (SV) of the selected SV number are adopted as the fault features, and in second method, the energy of the principal components corresponding to the selected SV numbers are used as features. An artificial neural network (ANN) is used for fault diagnosis. The algorithms were evaluated using two experimental datasets one from a motor bearing subjected to different fault severity levels at various loads, with and without noise, and the other with bearing vibration data obtained in the presence of a gearbox. The effect of sample size, fault size and load on the fault feature is studied. The advantages of the proposed method over the exiting time series method are discussed. The experimental results demonstrate that the proposed bearing fault diagnosis method is simple, noise tolerant and efficient. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available