4.7 Article

Novel detection of local tooth damage in gears by the wavelet bicoherence

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 26, Issue -, Pages 218-228

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2011.07.002

Keywords

Instantaneous and locally averaged wavelet bicoherences; Early damage detection; Gears; Local tooth fault

Funding

  1. DTI (UK)

Ask authors/readers for more resources

A new technique, the instantaneous wavelet bicoherence (WB) is proposed and investigated. The use of the instantaneous and locally averaged WB from vibration measurements for local damage detection in gears is investigated for the first time; these bicoherences are better adapted than the classical Fourier bicoherence to the case of non-stationary signals. A new diagnostic feature based on the integrated modulus of the WB in a specific frequency range and a methodology for feature estimation are proposed. The WE techniques are applied to detection of a multiple like natural pitting on a back-to-back industrial spur gearbox system and natural pitting on a gear at test rig and show the possibility of early detection of local tooth faults. The detection effectiveness is evaluated by a local Fisher criterion estimated at each angular position of gear for the unpitted and pitted cases. The proposed WE-based diagnostic feature demonstrates robust experimental performance and superior detection capabilities (i.e., effective early damage detection differentially for teeth of the gear wheel) over the conventional detection methods based on the wavelet transform. The reason for this superior effectiveness is that the WE exploits the phase couplings of the wavelet transform at different frequencies, which contain useful additional information for detection of non-linear phenomena induced by local faults. The proposed approaches are compared with the two conventional approaches based on the wavelet transform. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available