4.7 Article

Interval model updating with irreducible uncertainty using the Kriging predictor

Journal

MECHANICAL SYSTEMS AND SIGNAL PROCESSING
Volume 25, Issue 4, Pages 1204-1226

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ymssp.2010.10.009

Keywords

Model updating; Interval analysis; Irreducible uncertainty; Kriging predictor; Parameter vertex solution

Funding

  1. European Union [MEXT-CT-2006 042383]

Ask authors/readers for more resources

Interval model updating in the presence of irreducible uncertain measured data is defined and solutions are made available for two cases. In the first case, the parameter vertex solution is used but is found to be valid only for particular parameterisation of the finite element model and particular output data. In the second case, a general solution is considered, based on the use of a meta-model which acts as a surrogate for the full finite element mathematical model. Thus, a region of input data is mapped to a region of output data with parameters obtained by regression analysis. The Kriging predictor is chosen as the meta-model in this paper and is found to be capable of predicting the regions of input and output parameter variations with very good accuracy. The interval model updating approach is formulated based on the Kriging predictor and an iterative procedure is developed. The method is validated numerically using a three degree of freedom mass-spring system with both well-separated and close modes. A significant advantage of Kriging interpolation is that it enables the use of updating parameters that are difficult to use by conventional correction of the finite element model. An example of this is demonstrated in an experimental exercise where the positions of two beams in a frame structure are selected as updating parameters. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available