4.5 Article Proceedings Paper

Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques

Journal

MEASUREMENT SCIENCE AND TECHNOLOGY
Volume 21, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/21/9/094024

Keywords

optical fiber sensors; stimulated Brillouin scattering; fiber testing; coding

Ask authors/readers for more resources

In this paper we describe and implement a long-range Brillouin optical time-domain analysis (BOTDA) sensor, for both temperature and strain measurements, using optical pulse coding techniques. A theoretical analysis of Simplex coding applied to BOTDA systems is presented and experimentally demonstrated for both Brillouin loss and Brillouin gain configurations. With the proposed technique, similar to 7.1 dB and similar to 10.3 dB of signal-to-noise ratio improvements are demonstrated in BOTDA measurements using 127-bit and 511-bit Simplex codes, respectively. This feature allows us to extend the dynamic range of the measurements, overcoming the limitations to the maximum usable optical power imposed by pump depletion and modulation instability; thus, the sensing range can be extended by several tens of kilometers while keeping meter-scale spatial resolution. Experimental results show the capabilities of optical pulse coding techniques to achieve 1 m spatial resolution over 50 km of standard single-mode fiber enabling temperature and strain resolutions equal to 2.2. degrees C and 44 mu epsilon, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available