4.5 Article

Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy

Journal

MEASUREMENT SCIENCE AND TECHNOLOGY
Volume 21, Issue 10, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/21/10/105802

Keywords

endoscopy; friction; adhesion; soft polymer

Funding

  1. Intelligent Microsystem Center, KIST, SouthKorea
  2. European Commission

Ask authors/readers for more resources

Capsule endoscopy is an emerging field in medical technology. Despite very promising innovations, some critical issues are yet to be addressed, such as the management and possible exploitation of the friction in the gastrointestinal environment in order to control capsule locomotion more actively. This paper presents the fabrication and testing of bio-inspired polymeric micro-patterns, which are arrays of cylindrical pillars fabricated via soft lithography. The aim of the work is to develop structures that enhance the grip between an artificial device and the intestinal tissue, without injuring the mucosa. In fact, the patterns are intended to be mounted on microfabricated legs of a capsule robot that is able to move actively in the gastrointestinal tract, thus improving the robot's traction ability. The effect of micro-patterned surfaces on the leg-slipping behaviour on colon walls was investigated by considering both different pillar dimensions and the influence of tissue morphology. Several in vitro tests on biological samples demonstrated that micro-patterns of pillars made from a soft polymer with an aspect ratio close to 1 enhanced friction by 41.7% with regard to flat surfaces. This work presents preliminary modelling of the friction and adhesion forces in the gastrointestinal environment and some design guidelines for endoscopic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available