4.5 Article

A demodulation method based on improved local mean decomposition and its application in rub-impact fault diagnosis

Journal

MEASUREMENT SCIENCE AND TECHNOLOGY
Volume 20, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/20/2/025704

Keywords

local mean decomposition; demodulation; instantaneous frequency; instantaneous amplitude; instantaneous time-frequency spectrum; rub-impact

Funding

  1. National Natural Science Foundation of China [50335030]
  2. National High-tech R& D Program of China [2006AA04Z430]

Ask authors/readers for more resources

Demodulation is an available method for mechanical diagnoses, and a demodulation technique based on improved local mean decomposition (LMD) is proposed in this paper. A method of boundary process and a strategy for determining the step size of moving average are presented to improve the LMD algorithm. Instantaneous amplitude (IA) and instantaneous frequency (IF) of the signal can be computed independently of Hilbert transform using the improved LMD method. A well-constructed description of the derived IA and IF is given in the form of instantaneous time-frequency spectrum (ITFS) which preserves both the time and frequency information simultaneously. Results of three synthetic signals indicate that this proposed method is the best demodulation approach to extracting the all-round carrier and modulated components as well as the accurate IF, compared with Hilbert-Huang transform and stationary wavelet transform. The validity of the technique is then demonstrated on a real rotor system of a gas turbine with rub-impact fault. Due to the opposite friction during operation, the transient fluctuations of the IF of the fundamental harmonic component are successfully identified in the ITFS. In addition, we find that the proposed technique is more effective and sensitive than other methods in detecting sub-harmonics and FM components contained in the rub-impact signals. Thus the present method is powerful in the analysis of modulated signals and is an effective tool for the detection of rub-impact faults.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available