4.7 Article

Forward and inverse modelling approaches for prediction of light stimulus from electrophysiological response in plants

Journal

MEASUREMENT
Volume 53, Issue -, Pages 101-116

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2014.03.040

Keywords

Dynamical modelling; Environment prediction; Inverse model; Plant electrical signal; Statistical estimators; System identification

Funding

  1. PLants Employed As SEnsor Devices (PLEASED)
  2. EC [296582]

Ask authors/readers for more resources

In this paper, system identification approach has been adopted to develop a novel dynamical model for describing the relationship between light as an environmental stimulus and the electrical response as the measured output for a bay leaf (Laurus nobilis) plant. More specifically, the target is to predict the characteristics of the input light stimulus (in terms of on-off timing, duration and intensity) from the measured electrical response-leading to an inverse problem. We explored two major classes of system estimators to develop dynamical models-linear and nonlinear-and their several variants for establishing a forward and also an inverse relationship between the light stimulus and plant electrical response. The best class of models are given by the Nonlinear Hammerstein-Wiener (NLHW) estimator showing good data fitting results over other linear and nonlinear estimators in a statistical sense. Consequently, a few set of models using different functional variants of NLHW has been developed and their accuracy in detecting the on-off timing and intensity of the input light stimulus are compared for 19 independent plant datasets (including 2 additional species viz. Zamioculcas zamiifolia and Cucumis sativus) under similar experimental scenario. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available