4.7 Article

Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm

Journal

MEASUREMENT
Volume 47, Issue -, Pages 558-568

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2013.09.031

Keywords

MRI brain image; Entropy; Thresholds; Image segmentation; Real coded genetic algorithm

Ask authors/readers for more resources

Medical image analysis is one of the major research areas in the last four decades. Many researchers have contributed quite good algorithms and reported results. In this paper, real coded genetic algorithm with Simulated Binary Crossover (SBX) based multilevel thresholding is used for the segmentation of medical brain images. The T2 weighted Magnetic Resonance Imaging (MRI) brain images are considered for image segmentation. The optimum multilevel thresholding is found by maximizing the entropy. The results are compared with the results of the existing algorithms like Nelder-Mead simplex, PSO, BF and ABF. The statistical performances of the 100 independent runs are reported. The results reveal that the performance of real coded genetic algorithm with SBX crossover based optimal multilevel thresholding for medical image is better and has consistent performance than already reported methods. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available