4.6 Article

The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix

Journal

MATRIX BIOLOGY
Volume 37, Issue -, Pages 60-68

Publisher

ELSEVIER
DOI: 10.1016/j.matbio.2014.02.002

Keywords

Extracellular matrix; Multicellularity; Choanoflagellate; Filasterea; Metazoa; Adhesion

Funding

  1. University of Bristol School of Biochemistry

Ask authors/readers for more resources

The extracellular matrix (ECM) is a major mediator of multi-cellularity in the metazoa. Multiple ECM proteins are conserved from sponges to human, raising questions about the evolutionary origin of ECM. Choanoflagellates are the closest unicellular relatives of the metazoa and proteins with domains characteristic of metazoan ECM proteins have been identified from the genome-predicted proteome of the choanoflagellate Monosiga brevicollis. However, a systematic analysis of M. brevicollis secretory signal peptide-containing proteins with ECM domains has been lacking. We analysed all predicted secretory signal-peptide-containing proteins of M. brevicollis for ECM domains. Nine domains that are widespread in metazoan ECM proteins are represented, with EGF, fibronectin III, laminin G, and von Willebrand Factor_A domains being the most numerous. Three proteins contain more than one category of ECM domain, however, no proteins correspond to the domain architecture of metazoan ECM proteins. The fibronectin III domains are all present within glycoside hydrolases and none contain an integrin-binding motif. Glycosaminoglycan-binding motifs identified in animal thrombospondin type 1 domains are conserved in some M. brevicollis representatives of this domain, whereas there is little evidence of conservation of glycosaminoglycan-binding motifs in the laminin G domains. The identified proteins were compared with the predicted secretory ECM domain-containing proteins of the integrin-expressing filasterean, Capsaspora owczarzaki. C. owczarzaki encodes a smaller number of secretory, ECM domain-containing proteins and only EGF, fibronectin type III and laminin G domains are represented. The M. brevicollis and C. owczarzaki proteins have distinct domain architectures and all proteins differ in their domain architecture to metazoan ECM proteins. These identifications provide a basis for future experiments to validate the extracellular location of these proteins and uncover their functions in choanoflagellates and C owczarzaki. The data strengthen the model that ECM proteins are metazoan-specific and evolved as innovations in the last common metazoan ancestor. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available