4.6 Article

The stimulation of adenosine 2A receptor reduces inflammatory response in mouse articular chondrocytes treated with hyaluronan oligosaccharides

Journal

MATRIX BIOLOGY
Volume 31, Issue 6, Pages 338-351

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matbio.2012.07.001

Keywords

Hyaluronan; NF-kB; Adenosine receptors; Cytokines; siRNA; Mouse chondrocytes; CD44

Funding

  1. University of Messina, Italy

Ask authors/readers for more resources

The adenosine 2A receptor (A(2A)R) is greatly involved in inflammation pathologies such as rheumatoid arthritis. By interacting with A(2A)R, the purine nucleoside adenosine acts as a potent endogenous inhibitor of the inflammatory process in a variety of tissues. Hyaluronan (HA) fragments act to prime inflammation via CD44 and the toll-like receptor 4 (TLR-4). The aim of this study was to investigate whether the inhibition/stimulation of A(2A)R modulates the inflammation cascade primed by small HA fragments in mouse articular chondrocytes. 6-mer HA treatment induced up-regulation of CD44, TLR4 and A(2A)R mRNA expression and the related protein levels, and NF-kB activation, that in turn increased TNF-alpha, IL-1 beta, and IL-6 and production. Treatment with a selective 2A adenosine receptor agonist (2-phenylaminoadenosine) enhanced A(2A)R increase, as well as the inhibition of CD44 and TLR4 activity using two specific antibodies abolished up-regulation of CD44 and TLR4, and significantly reduced, especially by antibody inhibition, NF-kB activation and pro-inflammatory cytokine production. Furthermore, the exposure of chondrocytes to A(2A)R specific interference mRNA (A(2A)R siRNA) enhanced HA 6-mer induced NF-kB activation and inflammatory cytokine increase. Finally, the use of an exchange protein activated by cAMP (EPAC) siRNA and a specific PICA inhibitor showed a predominant EPAC involvement in the mediation of the anti-inflammatory activity exerted by A(2A)R stimulation. These data suggest that HA depolymerization occurring during inflammation contributes to priming of the inflammatory cascade, while endogenous adenosine, by exerting anti-inflammatory response via A(2A)R , could be a modulatory mechanism that attempts to attenuate the inflammation process. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available