4.6 Article

A comprehensive model of hyaluronan turnover in the mouse

Journal

MATRIX BIOLOGY
Volume 31, Issue 2, Pages 81-89

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matbio.2011.11.002

Keywords

Hyaluronan; Hyaluronidase; Glycosaminoglycan; Pharmacokinetics; Turnover

Ask authors/readers for more resources

The metabolism of hyaluronan (HA), especially its catabolism, is still far from being elucidated. Although several studies suggest that HA is degraded locally in tissues and through the lymphatic or circulatory systems, much needs to be learned about the enzymes, receptors and cell types that support this dynamic process. In the current work, the clearance of exogenously administered HA was examined in a C57BL/6 mouse model. Hyaluronidase-sensitive fluorescein-labeled 1.2 MDa hyaluronan (flHA) was administered either intravenously (i.v.) or subcutaneously (s.c.) into wild type C57BL/6 mice. Plasma was sampled for pharmacokinetic analysis and tissues were harvested for histological examination of the cell types responsible for uptake using immunofluorescent localization and for size exclusion chromatography analysis. We observed that flHA could be degraded locally in the skin or be taken up by sinusoidal cells in lymph nodes, liver and spleen. I.v. administration of flHA revealed non-linear Michaelis-Menten pharmacokinetics compatible with a saturable, receptor-mediated clearance system (K-m=11.6 mu g/ml +/- 46.0%, V-max=1.69 mu g/ml/min +/- 59.7%). Through a combination of immunofluorescence microscopy, pharmacokinetic, and chromatographic analyses of labeled substrate in vivo, our results shed additional light on the mechanisms by which HA is catabolized in mammals, and serve as a basis for future studies. (c) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available