4.6 Article

Matrilin-4 is processed by ADAMTS-5 in late Golgi vesicles present in growth plate chondrocytes of defined differentiation state

Journal

MATRIX BIOLOGY
Volume 30, Issue 4, Pages 275-280

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matbio.2011.04.002

Keywords

Cartilage; Growth plate; ADAMTS; Proteolytic processing; Matrilin

Funding

  1. DFG [WA1338/2-6, BR2304/4-1, ZA561/2-1]

Ask authors/readers for more resources

The two aggrecanases ADAMTS-4 and ADAMTS-5 have been shown to not only play roles in the breakdown of cartilage extracellular matrix in osteoarthritis, but also mediate processing of matrilins in the secretory pathway. The matrilins are adaptor proteins with a function in connecting fibrillar and network-like components in the cartilage extracellular matrix. Cleavage resulting in processed matrilins with fewer ligand-binding subunits could make these less efficient in providing matrix cohesion. In this study, the processing and degradation of matrilin-4 during cartilage remodeling in the growth plate of the developing mouse long bones were studied in greater detail. We show that ADAMTS-5 and a matrilin-4 neoepitope, revealed upon ADAMTS cleavage, colocalize in prehypertrophic/hypertrophic chondrocytes while they are not detected in proliferating chondrocytes of the growth plate. ADAMTS-5 and the cleaved matrilin-4 are preferentially detected in vesicles derived from the Golgi apparatus. The matrilin-4 neoepitope was not observed in the growth plate of ADAMTS-5 deficient mice. We propose that in the growth plate ADAMTS-5, and not ADAMTS-4, has a physiological function in the intracellular processing of matrilins and potentially of other extracellular matrix proteins. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available