4.6 Article

Transport of a hyaluronan-binding protein in brain tissue

Journal

MATRIX BIOLOGY
Volume 28, Issue 7, Pages 396-405

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matbio.2009.06.002

Keywords

Extracellular matrix; Brain development; Lectican; Neurocan; Guided diffusion

Funding

  1. BMBF [01 GN0502]

Ask authors/readers for more resources

Hyaluronan is an unsulfated linear glycosaminoglycan with the ability to nucleate extracellular matrices by the formation of aggregates with lecticans. These matrices are essential during development of the central nervous system. In the prospective white matter of the developing brain hyaluronan is organized into fiber-like structures according to confocal microscopy of fixed slices which may guide the migration of neural precursor cells [Baier, C., S.L Baader, J. Jankowski, V. Gieselmann, K. Schilling, U. Rauch, and J. Kappler. 2007. Hyaluronan is organized into fiber-like structures along migratory pathways in the developing mouse cerebellum. Matrix Biol. 26: 348-58]. By using plasmon surface resonance, microinjection into brain slices and fluorescence correlation spectroscopy, we show that the brain-specific lecticans bind to, but also dissociate rather rapidly from hyaluronan. After microinjection into native cerebellar slices a GFP-tagged hyaluronan-binding neurocan fragment was enriched at binding sites in the prospective white matter, which had a directional orientation and formed local stationary concentration gradients in areas where binding sites are abundant. Fluorescence correlation spectroscopy measurements at fixed brain slices revealed that fiber-bound neurocan-GFP was mobile with D(fiber(neurocan-GFP)) = 4 x 10(-10) cm(2)/s. Therefore, we propose that hyaluronan-rich fibers in the prospective white matter of the developing mouse cerebellum can guide the diffusion of lecticans. Since lecticans bind a variety of growth and mobility factors, their guided diffusion may contribute to the transport of these polypeptides and to the formation of concentration gradients. This mechanism could serve to encode positional information during development. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available