4.3 Article

Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media

Journal

MATHEMATICAL PROBLEMS IN ENGINEERING
Volume 2014, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2014/694350

Keywords

-

Funding

  1. National Natural Science Foundation [11102034]
  2. Important National Science & Technology Specific Project [2011ZX02403-004]

Ask authors/readers for more resources

Discrete element method (DEM) is used to produce dense and fixed porous media with rigid mono spheres. Lattice Boltzmann method (LBM) is adopted to simulate the fluid flow in interval of dense spheres. To simulating the same physical problem, the permeability is obtained with different lattice number. We verify that the permeability is irrelevant to the body force and the media length along flow direction. The relationships between permeability, tortuosity and porosity, and sphere radius are researched, and the results are compared with those reported by other authors. The obtained results indicate that LBM is suited to fluid flow simulation of porous media due to its inherent theoretical advantages. The radius of sphere should have ten lattices at least and the media length along flow direction should be more than twenty radii. The force has no effect on the coefficient of permeability with the limitation of slow fluid flow. For mono spheres porous media sample, the relationship of permeability and porosity agrees well with the K-C equation, and the tortuosity decreases linearly with increasing porosity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available