4.1 Article

Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulations

Journal

MATHEMATICAL AND COMPUTER MODELLING
Volume 49, Issue 11-12, Pages 2128-2137

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mcm.2008.07.014

Keywords

Delay differential equations; Distributed delay; Cell population dynamics; Growth factors; Negative and positive feedback

Ask authors/readers for more resources

We consider a nonlinear mathematical model of hematopoietic stem cell dynamics, in which proliferation and apoptosis are controlled by growth factor concentrations. Cell proliferation is positively regulated, while apoptosis is negatively regulated. The resulting age-structured model is reduced to a system of three differential equations, with three independent delays, and existence of steady states is investigated. The stability of the trivial steady state, describing cells dying out with a saturation of growth factor concentrations is proven to be asymptotically stable when it is the only equilibrium. The stability analysis of the unique positive steady state allows the determination of a stability area, and shows that instability may occur through a Hopf bifurcation, mainly as a destabilization of the proliferative capacity control, when cell cycle durations are very short. Numerical simulations are carried out and result in a stability diagram that stresses the lead role of the introduction rate compared to the apoptosis rate in the system stability. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available