4.5 Article

A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock

Journal

REVIEW OF SCIENTIFIC INSTRUMENTS
Volume 86, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4935172

Keywords

-

Funding

  1. LabeX FIRST-TF
  2. French Direction Generale de l'Armement (DGA) agency

Ask authors/readers for more resources

This article reports on the design and characterization of a high-overtone bulk acoustic wave resonator (HBAR)-oscillator-based 4.596 GHz frequency source. A 2.298 GHz signal, generated by an oscillator constructed around a thermally controlled two-port aluminum nitride-sapphire HBAR resonator with a Q-factor of 24 000 at 68 degrees C, is frequency multiplied by 2-4.596 GHz, half of the Cs atom clock frequency. The temperature coefficient of frequency of the HBAR is measured to be -23 ppm/degrees C at 2.298 GHz. The measured phase noise of the 4.596 GHz source is -105 dB rad(2)/Hz at 1 kHz offset and -150 dB rad(2)/Hz at 100 kHz offset. The 4.596 GHz output signal is used as a local oscillator in a laboratory-prototype Cs microcell-based coherent population trapping atomic clock. The signal is stabilized onto the atomic transition frequency by tuning finely a voltage-controlled phase shifter implemented in the 2.298 GHz HBAR-oscillator loop, preventing the need for a high-power-consuming direct digital synthesis. The short-term fractional frequency stability of the free-running oscillator is 1.8 x 10(-9) at one second integration time. In locked regime, the latter is improved in a preliminary proof-of-concept experiment at the level of 6.6 x 10(-11) tau(-1/2) up to a few seconds and found to be limited by the signal-to-noise ratio of the detected CPT resonance. (C) 2015 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available