4.8 Article

Electrical nanogap devices for biosensing

Journal

MATERIALS TODAY
Volume 13, Issue 11, Pages 28-41

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S1369-7021(10)70201-7

Keywords

-

Funding

  1. Chinese Academy of Sciences, China
  2. National Natural Science Foundation of China [90923033]

Ask authors/readers for more resources

For detecting substances that are invisible to the human eye or nose, and particularly those biomolecules, the devices must have very small feature sizes, be compact and provide a sufficient level of sensitivity, often to a small number of biomolecules that are just a few nanometres in size. Electrical nanogap devices for biosensing have emerged as a powerful technique for detecting very small quantities of biomolecules. The most charming feature of the devices is to directly transduce events of biomolecules specific binding into useful electrical signals such as resistance/impedance, capacitance/dielectric, or field-effect. Nanogap devices in electrical biosensing have become a busy area of research which is continually expanding. A wealth of research is available discussing planar and vertical nanogap devices for biosensing. Planar nanogap devices including label-free, gold nanoparticle-labeled, nanoparticles-enhanced, nanogapped gold particle film, and carbon nanotube nanogap devices as well as vertical nanogap devices with two and three terminals for biosensing are carefully reviewed. The aim of this paper is to provide an updated overview of the work in this field. In each part, we discuss the principles of operation of electrical biosensing and consider major strategies for enhancing their performance and/or key challenges and opportunities in current stages, and in their further development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available