4.6 Article

Novel route for fabrication of nanostructured α-Fe2O3 gas sensor

Journal

MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
Volume 17, Issue -, Pages 67-73

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2013.08.016

Keywords

Oxides; Thin films; Sol-gel growth; X-ray diffraction; Microstructure

Funding

  1. Department of Atomic Energy-Board of Research in Nuclear Science, Govt. of India, New Delhi [2010/37P/45/BRNS/1442]

Ask authors/readers for more resources

Iron oxide (Fe2O3) nanoparticles were grown on glass substrate by cost effective, low temperature sol- gel spin coating technique. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy. The hexagonal alpha-Fe2O3 nanoparticles formation takes place with the predominant orientation along (104) plane. These nanocrystalline alpha-Fe2O3 samples were used to explore gas response properties for NO2, NH3, H2S and C2H5OH. It is observed that alpha-Fe2O3 showed higher response (17%) for NO2, gas at 200 degrees C. The high NO2 gas sensitivity and low operating temperature of alpha-Fe2O3 nanoparticles can be attributed to the surface morphology. The reproducibility and stability study of the Fe2O3 sensor confirmed its candidature for detection of NO2 gas at low concentration (10-100 ppm) and at low operating temperature. Results of impedance spectroscopy revealed that the change in resistance of the film after exposure to NO2 is mainly contributed by intragrain region. On interaction with NO2 the electrons trapped by adsorbed oxygen in the grain boundary are released which decreases the majority carriers and thus increasing the resistance of the Fe2O3 film. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available