4.7 Article

Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2014.04.078

Keywords

Spark plasma sintering; Air atomization; Aluminum; Mechanical properties; Microstructure; Residual impurities

Funding

  1. Auto21 Networks of Centres of Excellence of Canada
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) [C502-CPM]

Ask authors/readers for more resources

Two air atomized aluminum powders, one of commercial purity and the other magnesium-doped (0.4 wt%), were processed by SPS and conventional PM means. An investigation of SPS processing parameters and their effect on sinter quality were investigated. A comparison with conventionally processed PM counterparts was also conducted. Applied pressure and ultimate processing temperature bore the greatest influence on processing, while heating rate and hold time showed a minor effect. Full density specimens were achieved for both powders under select processing conditions. To compliment this, large (80 mm) and small (20 mm) diameter samples were made to observe possible up-scaling effects, as well as tensile properties. Large samples were successfully processed, albeit with somewhat inferior densities to the smaller counterparts presumably due to the temperature inhomogeneity during processing. An investigation of tensile properties for SPS samples exhibited extensive ductility (similar to 30%) at high sintering temperatures, while lower temperature SPS samples as well as all PM processed samples exhibited a brittle nature. The measurement of residual oxygen and hydrogen contents showed a significant elimination of both species in SPS samples under certain processing parameters when compared to conventional PM equivalents. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available