4.7 Article

Lap shear strength and fatigue behavior of friction stir spot welded dissimilar magnesium-to-aluminum joints with adhesive

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2012.11.039

Keywords

Magnesium alloy; Aluminum alloy; Adhesive; Friction stir spot welding; Lap shear strength; Fatigue properties

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. AUTO21 Network of Centers of Excellence
  3. Premier's Research Excellence Award (PREA)
  4. NSERC-Discovery Accelerator Supplement (DAS) Award
  5. Canada Foundation for Innovation (CFI)
  6. Ryerson Research Chair (RRC) program

Ask authors/readers for more resources

Lightweighting is currently considered as an effective way in improving fuel efficiency and reducing anthropogenic greenhouse gas emissions. The structural applications of lightweight magnesium and aluminum alloys in the aerospace and automotive sectors unavoidably involve welding and joining while guaranteeing the safety and durability of motor vehicles. The objective of this study was to evaluate the lap shear strength and fatigue properties of friction stir spot welded (FSSWed) dissimilar AZ31B-H24 Mg alloy and Al alloy (AA) 5754-O in three combinations, i.e., (top) Al/Mg (bottom), Al/Mg with an adhesive interlayer, and Mg/Al with an adhesive interlayer. For all the dissimilar Mg-to-Al weld combinations, FSSW induced an interfacial layer in the stir zone (SZ) that was composed of intermetallic compounds of Al3Mg2 and Al12Mg17, which led to an increase in hardness. Both Mg/Al and Al/Mg dissimilar adhesive welds had significantly higher lap shear strength, failure energy and fatigue life than the Al/Mg dissimilar weld without adhesive. Two different types of fatigue failure modes were observed. In the Al/Mg adhesive weld, at high cyclic loads nugget pull-out failure occurred due to fatigue crack propagation circumferentially around the nugget. At low cyclic loads, fatigue failure occurred in the bottom Mg sheet due to the stress concentration of the keyhole leading to crack initiation followed by propagation perpendicular to the loading direction. In the Mg/Al adhesive weld, nugget pull-out failure mode was primarily observed at both high and low cyclic loads. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available