4.7 Article

On deformation twinning in a 17.5% Mn-TWIP steel: A physically based phenomenological model

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2010.10.031

Keywords

Stacking fault energy; Microtwins; TWIP steel; Dislocation; Microstructure; Deformation mechanisms

Funding

  1. U.S. Department of Energy [DE-AC05-76RL01830]
  2. Department of Energy Office of FreedomCAR and Vehicle Technologies

Ask authors/readers for more resources

TWinning Induced Plasticity (TWIP) steel is a typical representative of the 2nd generation advanced high strength steels (AHSS) which exhibits a combination of high strength and excellent ductility due to the deformation twinning mechanisms. This paper discusses the principal features of deformation twinning in faced-centered cubic austenitic steels and shows how a physically based macroscopic model can be derived from microscopic-level considerations. In fact, a dislocation-based phenomenological model, with internal state variables including dislocation density and micro-twins volume fraction describing the microstructure evolution during deformation process, is proposed to model the deformation behavior of TWIP steels. The originality of this work lies in the incorporation of a physically based model on twin nucleation and volume fraction evolution in a conventional dislocation-based approach. Microstructural level experimental observations with scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques together with the macroscopic quasi-static tensile test, for the TWIP steel Fe-17.5 wt.% Mn-1.4 wt.% Al-0.56 wt.% C, are used to validate and verify the modeling assumptions. The model could be regarded as a semi-phenomenological approach with sufficient links between microstructure and the overall mechanical properties, and therefore offers good predictive capabilities. Its simplicity also allows a modular implementation in finite element-based metal forming simulations. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available