4.7 Article

Effect of coal tar pitch modified by sulfur as a binder on the mechanical and tribological properties of bronze-impregnated carbon-matrix composites

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2011.01.004

Keywords

Hardness measurement; Mechanical characterization; Composites; Wear

Funding

  1. National Natural Science Foundation of China [21071011]
  2. Beijing Municipal Science and Technology Program [Z09010300840902]

Ask authors/readers for more resources

Bronze-impregnated carbon-matrix composites were prepared through compression molding, carbonization and impregnation. The mechanism of sulfuration was studied, and the effect of coal tar pitch modified by sulfur as a binder on the mechanical and tribological properties of composites was investigated by varying the content of sulfur. The results showed that the sulfur addition increased the softening point, carbon yield and C/H atomic ratio of coal tar pitch but decreased the toluene solubility and quinoline solubility due to the dehydrogenating polymerization of pitch molecules. The micro-hardness, bending strength and compressive strength of the composites were enhanced by increasing the mass percentage of sulfur and reached a maximum of 160 HV, 132.82 MPa and 293 MPa at 7 wt. % of sulfur, respectively. However, both the hardness and strength of the composites decreased as the content of sulfur increased beyond 7 wt. %. The friction coefficient value of composites increased monotonously, but the wear rate decreased with increasing sulfur content; subsequently, the wear rate reached a minimum of 3.045 x 10(-7) mm(3)/Nm at 7 wt. % of sulfur and then ascended. The wear mechanisms of the composites were adhesive wear, abrasive wear and oxidative wear. However, adhesive wear and oxidative wear occurred slightly for the composites with the binder modified by sulfur. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available