4.7 Article

Effects of interface formation kinetics on the microstructural properties of wear-resistant metal-matrix composites

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2010.06.060

Keywords

Metal-matrix composites; Tungsten carbide; Ni-based alloys; Dissolution kinetics

Funding

  1. Austrian Research Promotion Agency
  2. TecNet Capital GmbH (Province of Niederosterreich)
  3. Busatis GmbH
  4. Castolin Ges.m.b.H.

Ask authors/readers for more resources

Hard-particle metal-matrix composites (MMC) are generally used to increase the lifetime of machinery equipment exposed to severe wear conditions. Depending on the manufacturing technology, dissolution reactions of hard phases undergo different temperature/time profiles during processing affecting the microstructure and mechanical properties of the MMCs. Therefore, quantification of the carbide dissolution effects on the microstructure and micro-mechanical properties is the key to success in the development and optimisation of MMCs. Dissolution kinetics of WC/W2C in Ni-based matrices were determined in the liquid-sintering with a well-defined temperature/time profile. Microscopic evaluation of the samples showed two intermediate layers between matrix and carbides. The layer thicknesses were quantitatively determined using image analysis. A kinetics relationship was used for modelling the interface layer growth as a function of processing time, temperature and Cr-addition. Furthermore, the micro-mechanical properties of the intermediate layers were examined using nanoindentation. Based on the chemical composition and the hardness of the intermediate layers, formation of mixed Ni- and W-carbides and/or borides on the interface microstructures was indicated. Results showed that the chemical composition and the micro-mechanical properties were almost constant within all the detected layers in the interface zone between matrix and carbides, indicating that the microstructure gradients were most dependent on the intensity of the MMC processing. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available