4.7 Article

Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: Characterisation and modelling

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2008.06.033

Keywords

Friction stir welding; Differential scanning calorimetry (DSC); Transmission electron microscopy (TEM); Aluminium alloys; Precipitation; Hardening

Ask authors/readers for more resources

The effect of friction stir welding on the microstructure and local properties of the AA6056 alloy has been investigated for both T4 and T78 initial states. A particular attention was devoted to the relationship between the fine hardening precipitation within the affected zones and local hardness. In the heat-affected zones of the T4 weld an extensive heterogeneous precipitation is occurring on dislocations and dispersoids whereas the heat-affected zones of the T78 weld are characterised by the coarsening and dissolution of initial hardening precipitates and by heterogeneous precipitation on dispersoids. Modelling tools dedicated to the weld behaviour understanding have been developed: a physically based model for precipitation and hardening has been coupled to a model for thermal cycles. This model describes correctly both the microstructural evolution through the FSW joint and its consequence on hardness variations. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available