4.8 Review

Fabrication and electrical properties of graphene nanoribbons

Journal

MATERIALS SCIENCE & ENGINEERING R-REPORTS
Volume 70, Issue 3-6, Pages 341-353

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.mser.2010.06.019

Keywords

Graphene; Nanoribbons; Band gap; Fabrication; Electrical properties

Ask authors/readers for more resources

Graphene is a semimetal with a zero band gap, and therefore cannot be used for effective field-effect transistors (FETs) at room temperature. Theoretical study predicted an appreciable band gap opening with the formation of nanometer graphene nanoribbons (GNRs), providing opportunities for graphene based transistor application. In this paper, we review recent developments in fabrication and electrical property studies of GNRs. We first study the theoretic prediction of electrical structures in ideal graphene nanoribbons which is closely related to the edge configurations. Different experimental efforts to fabricate GNRs are introduced and the electrical transport behaviors of fabricated GNR device are described. We then investigate the effect of edge disorder and charge impurities on real device performance, in which Anderson localization and Coulomb blockade effect are discussed to explain the observed transport behaviors. Other approaches such as symmetry broken to induce band gap on bulk graphene are also described. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available