4.7 Article

Elaboration and characterization of a multifunctional silane/ZnO hybrid nanocomposite coating

Journal

APPLIED SURFACE SCIENCE
Volume 327, Issue -, Pages 379-388

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2014.11.161

Keywords

Sol-gel; ZnO; UV absorber; Barrier properties; Metallic substrate

Funding

  1. Materials Engineering Research Center of Mons University
  2. Walloon Region (Belgium)

Ask authors/readers for more resources

The present study aims at investigating the elaboration of a ZnO/sol-gel nanocomposite coating, which can provide a number of properties such as UV-absorption, mechanical and barrier effects, etc. depending on targeted applications. The sol-gel coating formulation is an inorganic-organic hybrid based on tetraethoxysilane (TEOS) and glycidyloxypropyltrimethoxysilane (GPTMS). In order to ensure good dispersion in the sol-gel matrix, ZnO nanoparticles were surface-modified with a silane coupling agent. The functionalization was confirmed by Fourier transform infrared (FTIR) and thermogravimetric (TGA) analyses. Field emission gun-scanning electron microscopy (FEG-SEM) characterization of the nanocomposite film reveals a homogeneous distribution and dispersion of the ZnO nanoparticles throughout the film. Glow discharge optical emission spectrometry (GDOES) analysis allows evaluating the thickness of coatings and getting a depth composition profile. Some properties such as UV-absorption and barrier effect are highlighted using a UV-visible spectrometer and electrochemical impedance spectroscopy (EIS), respectively. The effect of ZnO concentration is also presented. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available